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The aim of this seminar is to understand how topology can be
used in data analysis. We will study point clouds, i. e. large (finite)
sets of data points in, say, Rn, and see how topological tools can
be used to obtain qualitative and quantitative information in such
diverse fields as image recognition, neuroscience, the study of diseases,
etc. The main tool that we will study is persistent homology. The
usual homology of a finite set of points is not very interesting, of
course, but persistent homology is indeed able to detect the “shape”
of point clouds.

The seminar is aimed at both bachelor and master level stu-
dents in pure or applied mathematics. The course does not
require any specific prior knowledge in topology as we shall introduce
all the topological notions required throughout the course.

Each meeting will last 90 minutes. Each of you will give a talk of
at most 75 minutes so that there is plenty of time for questions and
feedback. All talks will be in English. Please prepare and hand in
lecture notes for your talk at least one week before the talk.

Initial meeting: Wednesday 4th April, 14.30
in 25.22.00.81

Regular sessions: Wednesdays 14.00–15.30
in 25.22.U1.74 (starting 18th April)



Background

Studying topological spaces on a point-set level is inherently difficult.
The aim of algebraic topology is therefore to translate questions about
topological spaces into problems of a more algebraic nature. For
example, the fundamental group, π1(X), of a topological space X and,
more generally, higher homotopy groups {πn(X)}n≥1, provide a way
of analysing topological spaces from the category of (abelian) groups
[Hatch, Chapters 1, 4]. These groups can tell two non-homeomorphic
as well as two non-homotopy equivalent topological spaces apart.
However, these groups are extremely hard to compute. For instance,
most of the homotopy groups of spheres are not known.

A more computable alternative to homotopy groups are homology
groups [Hatch, Chapter 2]. Roughly speaking, the nth homology
group counts the number of n-dimensional holes in a topological
space. For example, a circle has exactly one one-dimensional hole,
while a disk has no holes at all. There are different approaches or
constructions to define homology groups: simplicial, singular and
cellular homology, for instance.

Homology groups per se cannot possibly give any interesting
information about point clouds, i. e. about discrete finite sets of
points. In this seminar, we shall introduce persistent homology groups
to study the shape of such point clouds. With a given point cloud,
we will associate a sequence of nested topological objects, and study
the homology of these associated objects instead of the homology of
the initial point set. There will be homology classes that appear and
disappear along the sequence of these topological objects, and we
will be interested in the classes that persist (or ‘last long’) over the
sequence.

Outline

There will be up to 15 talks in total. The talks with a ∗ are optional.

Talk 0: Introduction (Oihana Garaialde Ocaña) I will give an
overview over the seminar and examine an example to illustrate
how persistent homology can be applied to study a data set. More
precisely, I will point out the steps that need to be carried out and
connect them with the talks that you will be giving in future sessions.

Talk 1: Simplicial complexes (Thomas Buchholz) Define simpli-
cial complexes and simplicial maps [Munk, Sections 1–3]. State the
Simplicial Approximation Theorem and the Nerve Theorem, probably
without proof [Munk, Sections 14 and 16].
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Talk 2: Simplicial homology (Alex and Karina) Define the ho-
mology of chain complexes and introduce simplicial homology. Define
Betti numbers. Explain the importance of homotopy invariance. Give
lots of examples. [Munk] [Hatch, Theorem 2.44 and p. 130]

Talk 3: Simplicial complexes associated with point clouds
(Christof and Johannes) Explain different simplicial complexes that
can be defined from a discrete set of points: Vietoris-Rips complex,
Čech complex, Delaunay and α-complexes. [EH10, pp. 59–74]

Talk 4*: Computability of homology Describe matrix reduc-
tion and give examples [Munk, Sections 10,11]. Also explain an
algorithmic version of this method to compute homology with coeffi-
cients in a finite field [CZ05, Sections 4, 6].

Talk 5: Persistent homology (Alessa) Define persistent homol-
ogy groups and barcodes [CZ05]. Give examples. State the Funda-
mental Theorem of Persistent Homology and explain its proof [Bel15,
Proof of Theorem 1.2.4], [Bel17, pp. 7–9] [CZ05].

Talk 6*: Software (Alex) Describe the two software packages
Ripser [Rips] and GUDHI [GU]. Give a live demonstration, using
examples from GHUDI’s documentation and, as far as possible,
examples from the seminar. Prior exposure to C++ and Python will
be helpful, but keep in mind when planning your talk that half the
audience will not be particularly familiar with either. Please speak
to Marcus Zibrowius if you are interested in giving this talk.

Talk 7*: Morse Theory Define Morse functions and transver-
sality conditions. Give an idea of the power of this theory. [EH10,
Chapter VI] [Zo96, Chapter 5]

Talk 8: Stability Theorem (Christof) State the theorem, ex-
plain the motivation behind it and sketch its proof [CSEH] [EH08,
Section 6].

Talk 9: Piecewise linear functions and Reeb graphs Morse
functions can be too restricted. Define piecewise linear (PL) functions
and PL Morse inequalities. Describe how to ‘draw’ PL functions via
Reeb graphs. State analogous results to those about Morse functions
for PL functions. [EH10] [CME+]

Talk 10: Application I: Statistics in persistent homology
Summarize [FLR+]: The authors employ statistical methods to
derive confidence sets that allow them to separate topological signals
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from topological noise, i. e. to isolate the significant parts of a given
data set.

Talk 11*: An algorithm for Reeb graphs Summarize [DN09]:
The article describe an efficient algorithm for computing Reeb graphs.

Talk 12: Mapper (Alessa) Summarize [SMG07]: The authors
give a generalization of Reeb graphs to study high-dimensional data
sets. This method is independent of the chosen cluster (a notion that
may be examined in more detail in the next talk).

Talk 13*: An Impossibility Theorem (Marcus Zibrowius) Ex-
plain that there are no clustering algorithms that simultaneusly
satisfy scale-invariance, richness and consistency. [Kl02]

Talk 14*: A∞-structures for persistent homology Can usual
Betti numbers distinguish two linked or unlinked circles? Give an
idea of how one can equip homology groups with an A∞-structure
and of how the previous theory can be extended to A∞-persistence.
[Bel15, Chapters 2 and 3]

Talk 15: Application II: A subgroup of breast cancers Sum-
marize [NLC11], one of the most famous applications of persistent
homology to a real-world problem.

Talk 16*: Application III: Image recognition Summarize
[LOC]: The authors explain a method that consists of computing the
persistence diagrams of functions defined on different data modalities,
including 2D shapes, textures and triangle meshes.

Talk 17*: Application IV: Neuronal morphologies Summa-
rize [KDS+]: Nervous systems are characterized by neurons displaying
a diversity of morphological shapes. The authors propose a stable
topological measure as a standardized descriptor for any tree-like
morphology, which encodes its skeletal branching anatomy.

Talk 18*: Application V: Sensor networks Summarize [SG07]:
The authors consider coverage problems in sensor networks with
minimal sensoring capabilities. In particular, they demonstrate that
a stationary collection of sensor nodes with no localization can verify
coverage in a bounded domain of unknown topological type, as long
as the boundary is not too pinched.
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Talk 19*: Application VI: Activity in the visual cortex
Summarize [SMI+]: Information in the cortex is thought to be
represented by the joint activity of neurons. The authors describe
how fundamental questions about neural representation can be cast
in terms of the topological structure of population activity. They find
that the topological structures of activity patterns when the cortex
is spontaneously active are similar to those evoked by natural image
stimulation and consistent with the topology of a two-sphere.

Talk 20*: Your favourite application If you come across an
interesting application of persistent homology that you would like to
learn more about, different from the applications listed above, why
not prepare a talk about it? Just speak to us, and we’ll see how and
where it can fit in.
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