Publikationsliste Herr Dr. Christian Döbler
Zur Veröffentlichung eingereicht:
- Döbler, C. (2020+): Normal approximation via non-linear exchangeable pairs.
https://arxiv.org/abs/2008.02272
In referierten Zeitschriften:
- Döbler, C. (2022): A short proof of Lévy's continuity theorem without using tightness. Statistics and Probability Letters, Vol. 18.
https://arxiv.org/abs/2111.01603 - Döbler, C., Kasprzak, M. und Peccati, G. (2022+): The multivariate functional de Jong CLT. Erscheint in: Probability Theory and Related Fields.
https://arxiv.org/abs/2104.01858 - Döbler, C., Kasprzak, M. und Peccati, G. (2022): Functional Convergence of U-Processes with Size-Dependent Kernels. Annals of Applied Probability, Vol. 32, No. 1, 551-601.
https://arxiv.org/abs/1912.02705 - Döbler, C. und Kasprzak, M. (2021): Stein's method of exchangeable pairs in multivariate functional approximations. Electronic Journal of Probability, Vol. 26, 1-50.
https://arxiv.org/abs/2005.12733 - Döbler, C. und Krokowski, K. (2019): On the fourth moment condition for Rademacher chaos. Annales de l'Institut Henri Poincaré, Vol. 55, No. 1, 61-97
https://doi.org/10.1214/17-aihp876 - Döbler, C. und Peccati, G. (2019): Quantitative CLTs for symmetric U-statistics using contractions. Electronic Journal of Probability, Vol. 24, No. 5
https://doi.org/10.1214/19-EJP264 - Döbler, C. und Peccati, G. (2018): Fourth moment theorems on the Poisson space: analytic statements via product formulae. Electronic Communications in Probability 2018, Vol. 23, No. 91
https://doi.org/10.1214/18-ECP196 - Döbler, C., Gantert, N., Höfelsauer, T., Popov, S. und Weidner, F. (2018): Recurrence and Transience of frogs on Z^d. Electronic Journal of Probability 2018, Vol. 23, No. 88
https://doi.org/10.1214/18-EJP216 - Döbler, C. und Peccati, G.(2018): The fourth moment theorem on the Poisson space. Annals of Probability 2018, Vol. 46, No. 4, 1878-1916
https://doi.org/10.1214/17-AOP1215 - Döbler, C., Vidotto, A. und Zheng, G. (2018): Fourth moment theorems on the Poisson space in any dimension. Electronic Journal of Probability, Vol. 23, No. 36
https://doi.org/10.1214/18-EJP168 - Döbler, C. und Peccati, G. (2018): The Gamma Stein equation and noncentral de Jong theorems. Bernoulli 2018, Vol. 24, No. 4B, 3384-3421
https://doi.org/10.3150/17-BEJ963 - Döbler, C., Gaunt, R.E. und Vollmer, S.J. (2017): An iterative technique for bounding derivatives of solutions of Stein equations. Electronic Journal of Probability, Vol. 22, No. 96
https://doi.org/10.1214/17-EJP118 - Döbler, C. (2017): Distributional Transformations without Orthogonality Relations. Journal of Theoretical Probability, Vol. 30, No. 2
https://doi.org/10.1007/s10959-015-0646-4 - Döbler, C. und Peccati, G. (2017): Quantitative de Jong theorems in any dimensions. Electronic Journal of Probability, Vol. 22, No. 2
https://doi.org/10.1214/16-EJP19 - Döbler, C. (2015): New Berry-Esseen and Wasserstein bounds in the CLT for non-randomly centered random sums by probabilistic methods. ALEA - Latin American Journal of Probability and Mathematical Statistics, Vol. 12, No. 2, 863-902
http://alea.impa.br/articles/v12/12-33.pdf - Döbler, C. (2015): Stein's method of exchangeable pairs for the Beta distribution and generalizations. Electronic Journal of Probability, Vol. 20, No. 109
https://doi.org/10.1214/EJP.v20-3933 - Döbler, C. (2015): Stein's method for the half-normal distribution with applications to limit theorems related to the simple symmetric random walk. ALEA - Latin American Journal of Probability and Mathematical Statistics, Vol. 12, No.1, 171-191
http://alea.impa.br/articles/v12/12-07.pdf - Döbler, C. und Pfeifroth, L. (2014): Recurrence for the frog model with drift on Z^d. Electronic Communications in Probability, Vol. 19, No. 79
https://doi.org/10.1214/ECP.v19-3740 - Döbler, C. und Stolz, M. (2012): A quantitative central limit theorem for linear statistics of random matrix eigenvalues. Journal of Theoretical Probability, Vol. 27, No. 3
URL: https://doi.org/10.1007/s10959-012-0451-2 - Döbler, C. und Stolz, M. (2011): Stein's method and the multivariate CLT for traces of powers on the classical compact groups. Electronic Journal of Probability, Vol. 16, No. 86
https://doi.org/10.1214/EJP.v16-960