Vortragsangebot für die Oberstufe: Faszination Mathematik

Das Mathematische Institut bietet Ihnen die Gelegenheit, mehr über neue, faszinierende Entwicklungen in der Mathematik zu erfahren. Sie haben die Möglichkeit, einen der unten aufgeführten Kolleginnen und Kollegen zu einem Vortag zum angegebenen Thema und zu einem Gespräch in Ihren Leistungskurs Mathematik oder Physik einzuladen.

Ort und Zeit nach Vereinbarung, wir kommen gerne zu Ihnen.

Das Angebot ist für Sie kostenlos!

Kontakt und weitere Informationen: 

Photo of Marcus  Zibrowius

Juniorprof. Dr. Marcus Zibrowius

Tel.: ++49 211 81 - 13858
Fax: ++49 211 81 - 13204

Mögliche Themen sind:


Eine runde Sache: Alles quadratisch

https://www.flickr.com/photos/filterforge/8677841394

Bei dem Stichwort "Quadrate" denkt man je nach Veranlagung vielleicht zuerst einmal an geometrische Formen, Käsekästchen, Sudoko oder eine bekannte Schokoladenmarke. Umgangssprachlich geht es bei schwierigen Herausforderungen bisweilen darum, die "Quadratur des Kreises" zu finden. In diesem Vortrag untersuchen wir die Quadratzahlen 1, 4, 9, … und ihre zahlentheoretischen Eigenschaften. Dabei behandeln wir einige ganz elementar erscheinende, doch bei genauerem Hinsehen recht tiefsinnige Fragen, wie zum Beispiel diese: Woran erkennt man Quadratzahlen? Wie viele Quadratzahlen gibt es eigentlich? Was haben Quadratzahlen mit der Kreiszahl Pi zu tun? Welche Zahlen lassen sich als Summen von 2, 3 oder 4 Quadratzahlen schreiben?

Mathematische Themen: elementare Zahlentheorie, Summenformeln, Was bedeutet "Unendlich"?, vollständige Induktion, einfache und schwierige Grenzwerte, die Kreiszahl Pi, klassische Erweiterungen von Zahlbereichen.

Prof. Dr. Benjamin Klopsch


Wege im Dunkeln

Quelle:https://en.wikipedia.org/wiki/File:Belt_trick_2.gif

Topologen versuchen, Räume zu ergründen, indem sie in ihnen umherlaufen. Wir werden das an einigen Beispielen ausprobieren und unter anderem lernen, wie schwierig es ist, einen Roboterarm zu programmieren.

Mathematischer Inhalt: die 2-Torsion in der Fundamentalgruppe der speziellen orthogonalen Gruppe SO(3) ... Aber keine Sorge. Im Vortrag wird diese Begrifflichkeit nicht auftauchen.

Benötigtes Material: ein Gürtel

Jun.-Prof. Dr. Marcus Zibrowius


Mathematik zum Brückenbauen

Am Beispiel von sogenannten Stabwerkskonstruktionen soll hier gezeigt werden, wie ein sehr komplex wirkendes Designproblem aus dem Ingenieurbereich mit Hilfe von einfachen Prinzipien aus der Mathematik und Physik in eine mathematische Form gegossen werden kann, die sich dann mit dem Computer lösen läßt.

Prof. Dr. Florian Jarre


Die Eulerzahl von Flächen

Die Vielfalt der Formen von (Ober)flächen läßt sich erstaunlicherweise auf einfache Weise durch eine einzige Kennzahl beschreiben, die Eulerzahl einer Fläche. Im Vortrag wird erläutert, wie man mit Hilfe von Graphen diese Eulerzahl berechnen kann und was sie mit der Krümmung der Fläche zu tuen hat, und es werden einige mathematische Anwendungen erklärt.

Mathematische Themen: Graphen, Flächen im Raum, Krümmung, Platonische Körper

Prof. Dr. Kai Köhler


M.C. Escher's Lithographie "Bildergalerie"

Viele der raffinierten Bilder M. C. Eschers lassen sich mit Begriffen der höheren Mathematik besser verstehen. Meistens gelingt dies mit Hilfe sogennanter "hyperbolischer Räume" und "Parkettierungen". Ganz andere Begriffe braucht man für seine ungewöhnliche "Bildergalerie". In dem Vortrag wird erklärt, was das Bild zeigt, wie man selbst ähnliche Bilder herstellen kann, warum das Bild einen weißen Fleck in der Mitte hat und wie dieser ausgefüllt werden kann.

Mathematische Themen: Komplexe Zahlen, Exponentialfunktion, Torus

Prof. Dr. Kai Köhler


Biostatistik und life-science: Analyse von Überlebenszeiten

Klinische Studien werden in der Regel mit modernen Methoden der mathematischen Statistik ausgewertet und durch Statistiker betreut. An einfachen Beispielen wird die mathematische Analyse von Überlebenskurven dargestellt. Im Hintergrund stehen moderne Methoden der Stochastik, die in vielen Bereichen der Risikobewertung eine Anwendung finden.

Prof. Dr. Arnold Janssen


Konstruktionen mit Zirkel und Lineal

In dem Vortrag werden einige klassische Konstruktionsprobleme der Antike (z. B. "Quadratur des Kreises") und der Beweis ihrer Unlösbarkeit mit modernen Methoden vorgestellt.

Mathematische Themen: Komplexe Zahlen, Körper, algebraische Zahlen

Prof. Dr. Stefan Schröer


Das Petersburger Spiel

Ein einfaches Münzwurf-Spiel beschäftigt die Mathematik bereits seit ca. 300 Jahren. Der Vortrag erläutert, wie die ursprünglich als paradox angesehene Natur des Spieles durch moderne stochastische Methoden aufgelöst werden kann, und wie dabei im Detail interessante Phänomene auftreten.

Prof. Dr. Peter Kern


Lichtgeschwindigkeit und Lorentz-Transformationen

Die Relativitätstheorie entstand nicht zuletzt aus dem experimentellen Ergebnis, dass zwei verschiedene Beobachter stets dieselbe Geschwindigkeit des Lichtes im Vakuum messen. Warum dies alleine bereits impliziert, welchen Unterschied zwei Beobachter bei anderen Geschwindigkeiten und Raum-Zeit-Koordinaten wahrnehmen, wird im Vortrag erklärt.

Mathematische Themen: Regelflächen, Quadriken, spezielle Relativitätstheorie

Prof. Dr. Kai Köhler


Das chinesische Postbotenproblem

Im Vortrag wird ein einfaches diskretes Minimierungsproblem vorgestellt. Dieses kann mit Hilfe eines Graphen veranschaulicht werden. Ausgehend von dem Graphen werden die Lösbarkeit und mögliche Lösungswege analysiert.

Prof. Dr. Achim Schädle


Aperiodische Parkettierungen von Penrose

Es gibt periodische und aperiodische Parkettierungen der Ebene. An den Waben von Bienen kann man eine periodische Parkettierung der Ebene mit Hilfe von Sechsecken sehen. Eine Parkettierung mit Hilfe von quadratischen Fliesen sieht man fast in jedem Haus. Viel attraktiver aber sind aperiodische Parkettierungen, die Penrose entdeckt hat. Sie sind sehr vielfältig und schön. Hinter diesen schönen Formen und Farben verbirgt sich interessante und nicht triviale Mathematik, die wir erläutern möchten.

Prof. Dr. Oleg Bogopolski

Verantwortlich für den Inhalt: E-Mail sendenWE Mathematik